

Mission to Planet Earth Developments

Presentation to

National Space Outlook Conference

Dr. Charles F. Kennel
Associate Administrator
Office of Mission to Planet Earth
June 21, 1995

MTPE

NASA'S UNIQUE CONTRIBUTION IS THE GLOBAL VIEW FROM SPACE

- Best way to study Earth as a whole is from space
- Satellites look at all parts of Earth- land, oceans, air and life and how they affect one another

They objectively compare regional and local environmental changes with the global "big picture"

• NASA's space research promotes domestic and international confidence in our understanding of the global environment

MTPE

THERE HAS BEEN GOOD PROGRESS

- A US/French oceanography satellite launched in 1992
 - is tracking El Nino weather events across the Pacific
 - is measuring global sea level changes
- In 1993, A NASA/Brazil Project
 - demonstrated ability of satellites to measure forest changes
 - deforestation rate less than previously thought
 - Brazil will monitor rain forest with US-built system
- In 1994, NASA results extended understanding of Antarctic "ozone hole"
 - NASA/NOAA measurements indicated ozone treaties are working
- In 1994, NASA launched the next generation weather satellite (GOES 8) and in 1995 launched GOES-9
- In 1994, the Shuttle twice carried into space the most advanced radar devoted to studying Earth's environment

...WITH MUCH MORE TO COME

- In 1995, a private company will launch a small spacecraft to provide NASA with important data on ocean plant life and to enable fishermen to improve their catch
- In 1995, NASA and Canada will begin the first comprehensive study of the Antarctic ice sheet from space
- In 1996, two small NASA spacecraft -- developed in two years -- will demonstrate cutting-edge technology, differentiate plant species, detect atmospheric pollution, and provide numerous commercial and government users with economically relevant information
- In 1997, a NASA/Japanese satellite will make the first precise measurements of tropical rainfall to improve climate predictions

First comprehensive study of interaction between atmosphere, oceans, land and life begins in 1998

- All the key elements of the Earth system will be observed together for the first time
- Provides a 15 year data set needed to discern cycles and trends
- Global data needed to make reliable climate forecasts
- A key issue is to relate global and regional/local processes
- Provides scientific, objective, <u>non-political</u> basis for environmental decisions
- EOS will provide data essential to forecasting the climate

MTPE

Understanding the individual parts of the climate system - and their interactions - will be valuable in the short-term

- Will there be floods or drought next year in my region?
- How does short-term climate change and land usage affect forest and agricultural productivity?
- How does the changing climate affect the biological productivity of our oceans?
- Will the sea level rise?

At first there will be one-year predictions, but as our data sets grow they will lengthen to 2, 3, 4 and more years

MTPE

Achieving the principal goal of the Global Change Research
Program = predicting the climate = will be highly significant

- Good predictions will mean the scientists have done their jobs
- Good predictions will stabilize a highly-charged debate
- Good predictions will help policymakers
- Good predictions will guide business planning and investment decisions

MTPE

- A priority during three administrations
 - Planned and designed during the Reagan Administration
 - A presidential initiative of the Bush Administration
 - Implementation continues in the Clinton Administration
- Implementation costs (through 2000) reduced by 60% since 1991
 - Vision of comprehensive measurements retained
 - System near minimum cost based on today's technology
 - Foreseeable innovations will reduce costs post-2000
- International collaboration has been and remains a foundation of the program since its inception
 - International partners will contribute \$1 billion in the pre-2000 period
 - NASA leadership helps America influence the global space2.pp@pp?ronmental agenda

EOS DATA AND INFORMATION SYSTEM (EOSDIS)

- Makes all Mission to Planet Earth data widely accessible
- Fosters integration of interdisciplinary Earth science community
- Encourages greater interaction between scientists and civil, policy, and practical users
- · Preserves knowledge base of data and research results

Evolution of EOSDIS

<u>Pre-EOSDIS</u>: data from each satellite, instrument and scientist independently captured, processed, and stored

- NASA's data holdings were too scattered
- Like the phone company without a phone book
- EOSDIS today: building one system to manage all NASA's Earth science data
 - Data system handles ground receiving stations, flight operations, data archive, and product distribution
 - Data system currently has approx. 360 data products from 40 past and present satellites
 - In the past year alone, NASA's data has been distributed to thousands of users
- <u>EOSDIS tomorrow</u>: Incorporates new commercial technologies and standards as they emerge and accomodates ever-broadening user base

space2.ppt/June21

First Phase of EOS: Proceeding on Schedule

- Schedule represents careful balance between funding constraints and need for integrated climate change measurements
 - FY 1996 budget request is minimum needed to support Phase 1 with available technology
- Critical to fly this first phase of 24 measurement types as soon as possible, beginning with the first launch in 1998
- At least 15 years of continuous data for each of the 24 measurement types is essential to detect the signature of a changing climate

The Next Phases of EOS: An Evolving Program

- Committed to reducing costs in second and third phases of EOS by:
 - New technology in satellites, instruments, ground systems and operations
 - Stregthening ties to commercial, interagency, and international partners
- Evolution of EOS made possible by:
 - Rapid advances in technology since original EOS program began
 - » In addition, evolution in science requirements
 - Emerging area of commercial remote sensing
- NASA initiated study to examine how best to incorporate innovation
 - Examine ways to reduce size, power, and processing requirements
 - Must maintain data continuity and integrity
 - Will develop proactive strategy for next phases by end of summer
 - Study effort does not represent restructuring of Phase 1 program

MTPE

space2.ppt/June21

NASA Studies

EOS Reshaping Science Strategy EOSDIS Reshaping NASA/NOAA Alignment Commercial Dimensions International Dimensions

BSD Study July 19-29

Seasonal to Interannual Global Change Decadal to Centennial Global Change Atmospheric Chemistry Large-Scale Ecology Observational Strategy Data System

space2.ppt/June21

Schedule

March 1995

• Initiation of NASA MTPE Evolution Study and NASA/
NOAA Roundtable

May 1995 • NASA Zero-base review (ZBR) decisions

June 1995 • EOS Investigator Working Group meeting

• JASON study on EOS technology infusion

• EOSDIS User Conference

July 1995
 NRC Workshop (including review of future EOS implementation and NASA/NOAA alignment)

New Millenium Workshop

August 1995
 NASA budget Decisions (input to President's FY97 budget)

September 1995 • Selection of EOS Common S/C contractor

Award of EOS Common S/C

July 1996 • Follow-up JASON and NAS Workshops

14 MTPE

NASA / NOAA Alignment Study

- <u>Purpose</u>: identify cost savings and service enhancements which could emerge from closer integration of NASA's and NOAA's programs in environmental observation and research
- <u>Structure</u>: Roundtable between NASA and NOAA senior officials will meet regularly to examine results of three working groups:
 - Collocation Synergy: exploring new approaches to research/ operations by taking advantage of collocation (proposed NOAA facility on GSFC East Campus)
 - Technology Infusion: exploring new/innovative ways to incorporate advanced technology from MTPE into NOAA's environmental weather satellite system
 - Data Systems Synergy: exploring innovative ways of using NASA and NOAA data systems to solve mutual problems more effectively

space2.ppt/June21

Summary

- Significant progress is being made in EOS, EOSDIS and Science programs
- MTPE, along with the rest of the Agency, is beginning to implement the results of the Zero Base Review activity as recommendations are accepted
- However, this addresses the President's FY96 budget request, and represents only the most optimistic budget scenario
- As the results of budget deliberations and the various summer studies become known, the MTPE program could look signficantly different than it does today

